Mox Lab provides laboratory consumables for researchers
53 Pesticide Residues Detecion-QuEChERS Syringe Filter 3201

A Rapid Method to Detect 53 Pesticide Residues/Multi-Pesticide Residues in Strawberries Using LC-MS/MS and QuEChERS Syringe Filter

Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, Jiangsu, China

Abstract: A rapid detection method for 45 pesticides and 8 metabolites (53 Pesticide Residues,Multi-Pesticide Residues) including fluazinam and chlorotoluron in strawberries was established using a multifunctional syringe filter and LC-MS/MS based on QuEChERS preprocessing technology. Strawberry samples were extracted with 1% acetonitrile containing acetic acid, purified and filtered using a QuEChERS syringe filter, and separated on a Waters BEH C18 column. Detection was performed using MRM mode on mass spectrometry. Results showed excellent linearity (R² > 0.99) for different target compounds at three fortification levels (0.05, 0.10, 0.20 mg/kg), with spike recoveries ranging from 75% to 114% and relative standard deviations (RSD) of 0.1% to 14.7%. The method is simple, rapid, accurate, reliable, requires minimal reagent use, and is suitable for multi-pesticide residues detection in strawberries.

 

 

QuEChERS syringe filter, Multi-Pesticide Residues, 53 Pesticide Residues, Multiple Pesticide Residues

In 2003, the United States Department of Agriculture’s Anastassiaeds. Metal. proposed the QuEChERS preprocessing method. Due to its advantages such as simplicity, speed, high recovery rates, accuracy, and precision, it has been widely used in pesticide residue detection technology.

This study employed a multifunctional syringe filter based on QuEChERS preprocessing technology, which simplifies and speeds up the purification and filtration of samples. Combined with LC-MS/MS, the study established a rapid multiresidue detection method suitable for 45 pesticides and 8 metabolites including fluazinam and chlorotoluron in strawberries.

1.Materials and Method

1.1 Instruments and Materials

  • LC-MS spectrometer
  • C18 column (1.7μm,1× 100 mm),
  • Electronic balance
  • Homogenizer
  • High-speed refrigerated centrifuge
  • HPLC-grade acetonitrile, HPLC-grade methanol, HPLC-grade formic acid, ultrapure water, analytical-grade acetic acid, analytical-grade sodium chloride
  • QuEChERS Syringe Filter ( F-QuEChERS-AOAC 3201)
  • 53 Pesticide standards, standards for multi-pesticide residues analysis

1.2 Sample Extraction and Purification

 

Accurately weigh 10 g of sample into a 50 mL centrifuge tube. Add 10 mL of 1% acetonitrile containing acetic acid. Homogenize at high speed for 1 minute, then add 4 g of sodium chloride. Vortex for 2 minutes, centrifuge at 7000 rpm for 5 minutes, and transfer 1 mL of the supernatant through a multifunctional syringe filter into a sample vial for analysis.

1.3 Instrument Conditions


Waters BEH C18,1.7μm,2.1×100 mm;
Temp.: 30 ℃;
Injection Sample Volume: 2μL;
Moble phase: 5 mmol/L
Ammonium acetate aqueous solution + 0.1% formic acid (aqueous phase) and methanol (organic phase)
Gradient elution, flow rate of 0.25 mL/min
Gradient elution program (5 mmol/L ammonium acetate aqueous solution + 0.1% formic acid : methanol)

0~2 min90%∶10%
4 min50%∶50%
6 min20%∶ 80%
8~12 min10%∶90%
13 min90%∶10%
13~ 15 min90%∶10%。

MS: H-ESI; positive scan mode voltage 3,500 V, negative scan mode voltage 2,500 V; sheath gas (nitrogen) flow rate 45 Arb, auxiliary gas (nitrogen) flow rate 10 Arb; ion transfer tube temperature 350 ℃. Data collected in MRM mode for 53 compounds, with MS parameters for LC-MS/MS detection shown in Table 1.

Table 1: Mass Spectrometry Parameters for LC-MS/MS Detection of 53 Compounds (Simulating 53 pesticide residues)
NO.CompoundsModePrecursor ion (m·z-1)Product ion  (m·z-1)Collision energy/VRF lens voltage/V
1MethamidophosPositive141.9794.11*  
125
1258
2AcetamipridPositive 183.91125
143.00*
16
10
40
3GlyphosatePositive213.94155.00
182.93*
15
10
65
4ThiamethoxamPositive218.1578.15
105.11*
38
19
93
5ImidaclopridPositive207.1289.15*
132.11
1043
6ThiamethoxamPositive 240.0386.22
148.07*
19
13
63
7MalathionPositive 163.388.11
106.11*
122.11
1049
8CarbendazimPositive192.09132.05
160.00*
29
17
129
9ThiaclopridPositive 291.94132.00
180.99
211.06*
20
21
85
10ImidaclopridPositive 256.03175.04
209.00*
17
14
107
11CitrininPositive345.04143.11
239.11*
27
12 
92
123-HydroxykynureninePositive 238.12163.05
181.13*
220.00
12
10
10
89
13DinotefuranPositive 22399.00
126.00*
20
15 
103
14MalathionPositive229.94125.07
198.88*
20
10 
82
15ThiamethoxamPositive116.1270.22
89.11* 
1046
16DDTPositive220.9479.18
109.04*
145.00
25
17
12
116
17CarbarylPositive 222.03123.12
165.07*
20
10 
96
18MethomylPositive202.03 127.12
145.07*
27
10
64
19MethidathionPositive277.00 97.04
142.93
170.93
198.95*
32
19
12
10
87
20MethamidophosPositive 292.94 143.00
171.00*
247.00
16
10
1
92
21DimethoatePositive312.00 236.00
270.00*
25
18
102
22ChlorpyrifosPositive 248.06 129.04*
155.00
16
13
78
23Thiophanate-methylPositive 317.97 105.12
133.07
160.00*
43
35
10
90
24MethomylPositive 200.12 107.11
183.00
24
23
174
25DifenoconazolePositive 294.13 70.29*
125.11
20
36
89
26AcetamipridPositive 388.06 165.00
272.93
301.00*
31
29
20
183
27MalathionPositive 331.03 284.93
127.11*
1074
28TriadimefonPositive 294.06 197.00*
225.00
15
12
127
29TriazophosPositive314.12 119.12
162.07*
31
17
150
30FonofosPositive386.91 258.84
281.88
350.88*
38
31
10
142
31FlonicamidNegative436.79 329.58*
332.50
14
16
123
32FluazinamPositive316.10 165.04*
247.06
27
17
109
33FluensulfoneNegative418.88 261.89
313.89
382.89*
28
19
10
130
34CarbarylNegative308.97 151.00
155.99
288.95*
16
10
10
106
35FlusilazoleNegative450.91 243.88
281.95
414.89*
48
27
15
173
36FenoxycarbNegative306.91126.06
154.00*
270.93
25
10
10
107
37BuprofezinPositive308.1670.29*
125.04
22
36
93
38DimethoatePositive305.0697.04
153.11
169.04*
33
20
19
137
39PyriproxyfenPositive388.15164.04
194.04*
17
10
89
40Oxydemeton-methylPositive299.0097.06
129. 12*
17
10
84
41ImidaclopridPositive375.94265.89
308.03*
16
10
122
42MalathionPositive367.97111.11
181.93*
321.96
37
13
10
114
43MethamidophosPositive261.0075.22*
198.88
1058
44PropiconazolePositive406.03250.95*
336.88
23
16
126
45MethoxyfenozidePositive404.09329.00*
344.06
372.00
30
24
10
131
46OxymatrinePositive409.16186.06
206.04*
17
13
96
47Amitraz benzoatePositive886.7082.22
158.11*
868.44
47
34
19
298
48ChlorpyrifosPositive372.91302.75*
344.75
17
12
133
49DDTPositive349.7997.05
197.88*
28
17
130
50DeltamethrinPositive282.09148.05
194.00
212.00*
27
17
10
79
51FlupyriminPositive540.00158.05
346.96
382.82*
19
42
19
181
52AbamectinPositive365.06147.11
309.00*
23
10
78
53AvermectinPositive895.46449.21
751.26*
43
39
296

2 Results and Analysis

2.1 Selection of Extraction Solvent

In blank strawberry samples, pesticide standard solutions of known concentrations were added, subjected to preprocessing, and then analyzed. The mass concentration of compounds was plotted on the x-axis against the peak area of the quantitative ion pair response on the y-axis to construct calibration curves. The results indicated that all 53 compounds exhibited excellent linearity, with correlation coefficients greater than 0.99. The concentration corresponding to three times the signal-to-noise ratio was determined as the method detection limit (as shown in Table 2).

Compared to conventional QuEChERS preprocessing, the QuEChERS syringe filter integrates the purification and filtration processes of QuEChERS preprocessing into one step, achieving a streamlined approach that is simpler, quicker, and effectively enhances preprocessing efficiency.

QuEChERS  Syringe Filter  containing PSA 50mg and MgSO4 150mg

Cat.No. F-QuEChERS-AOAC 3201

Table 2: Linear Regression Equations and Detection Limits of 53 Compounds

NoCompoundsRetention time/minLnear range /(mg·kg-1)Linear regression equationR2Detection limit /(mg·kg-1
1Methamidophos2.140.002~0.200y= 1 051x-1 3250.99840.002
2Acetamiprid3.030.005~0.200y=999x+1 2180.99890.005
3Glyphosate4.110.002~0.200y= 1 428x-1 0520.99940.002
4Thiamethoxam4.300.010~0.200y= 194.7x-624.20.99880.010
5Imidacloprid5.100.010~0.200y=324.9x-3 0680.99670.010
6Thiamethoxam5.480.002~0.200y= 1 696x+4 9340.99750.002
7Malathion5.840.002~0.200y=702.3x+453.30.99770.002
8Carbendazim5.990.002~0.200y=977.8x-4 4140.99770.002
9Thiacloprid6.030.001~0.200y=6 627x+32 4700.99540.001
10Imidacloprid6.480.001~0.200y=2 333x+10 5200.99890.001
11Citrinin6.710.020~0.200y=49.4x-6220.99990.020
123-Hydroxykynurenine6.710.001~0.200y= 1 836x+5 0920.99610.001
13Dinotefuran6.750.001~0.200y=8 176x+27 9300.99730.001
14Malathion6.770.001~0.200y=6 110x+5 6040.99920.001
15Thiamethoxam7.310.002~0.200y=3 290x-8 3240.99590.002
16DDT7.660.002~0.200y=2 203x+3 6810.99840.002
17Carbaryl7.690.001~0.200y=4 656x+13 1400.99800.001
18Methomyl7.870.001~0.200y=3 664x+1 4090.99860.001
19Methidathion8.030.001~0.200y=4 823x+2 5620.99820.001
20Methamidophos8.110.005~0.200y=766.3x+2 7190.99670.005
21Dimethoate8.180.005~0.200y=21.02x+555.20.99690.005
22Chlorpyrifos8.290.001~0.200y=26 820x+151 8000.99560.001
     23Thiophanate-methyl   8.400.001~0.200y=8 266x+41 130  0.99520.001
     24Methomyl   8.540.005~0.200y=667.8x+9 015  0.99970.005
     25Difenoconazole   8.690.001~0.200y= 13 700x+644 500  0.99700.001
     26Acetamiprid   8.700.001~0.200y= 14 530x+52 340  0.99700.001
     27Malathion   8.700.001~0.200y=3 081x+7 849  0.99660.001
     28Triadimefon   8.770.001~0.200y=2 293x+9 925  0.99570.001
     29Triazophos   8.830.001~0.200y=7 062x-2 169  0.99750.001
     30Fonofos   9.020.002~0.200y=932.6x-2 997  0.99830.002
     31Flonicamid   9.130.002~0.200y= 1 264x-291.2  0.99760.002
     32Fluazinam   9.140.001~0.200y= 19 070x+96 730  0.99700.001
     33Fluensulfone   9.220.001~0.200y=8 332x-24 330  0.99750.001
     34Carbaryl   9.220.010~0.200y=94.43x-305.3  0.99570.010
     35Flusilazole   9.360.001~0.200y=8 325x-1 529  0.99850.001
     36Fenoxycarb   9.410.020~0.200y= 142.9x+2 219  0.99820.020
     37Buprofezin   9.420.001~0.200y= 14 330x+85 920  0.99580.001
     38Dimethoate   9.480.001~0.200y=29 710x+23 010  0.99860.001
     39Pyriproxyfen   9.510.001~0.200y= 16 950x+5 987  0.99720.001
     40Oxydemeton-methyl   9.540.001~0.200y=3 787x+1 492  0.99790.001
     41Imidacloprid   9.600.001~0.200y= 1 403x+3 442  0.99930.001
     42Malathion   9.650.001~0.200y=3 664x+8 460  0.99610.001
     43Methamidophos   9.720.005~0.200y= 1 670x+680.3  0.99750.005
     44Propiconazole   9.800.001~0.200y=33 750x+72 370  0.99780.001
     45Methoxyfenozide   9.810.001~0.200y=7 851x+4 174  0.99750.001
     46Oxymatrine   9.810.001~0.200y= 16 120x+21 870  0.99860.001
47Amitraz benzoate    10.090.002~0.200y=4 689x+5 001  0.99900.002
     48Chlorpyrifos   10.200.001~0.200y= 10 630x-5 436  0.99700.001
     49DDT   10.720.002~0.200y= 1 776x-2 236  0.99550.002
     50Deltamethrin   10.830.001~0.200y=6 603x-20 390  0.99860.001
     51Flupyrimin   11.280.001~0.200y=4 782x-2 798  0.99790.001
     52Abamectin   11.530.001~0.200y=34 420x+19 580  0.99810.001
     53Avermectin   11.990.010~0.200y=41x+341.4  0.99630.010

2.4 Accuracy and Precision of the Method

In blank strawberry samples, pesticide standard solutions of known concentrations were separately added at levels of 0.05, 0.10, and 0.20 mg/kg. The results showed that at these addition levels, the recovery rates ranged from 75% to 114%, with relative standard deviations (RSD) ranging from 0.1% to 14.7% (as shown in Table 3).

Table 3: Recovery Rates and Relative Standard Deviations (n=6) of 53 Pesticides in Strawberries
No.CompoundsSpiked concentration /(mg·kg-1)Recovery Rate/%RSD/%
1Methamidophos0.05、0.10、0.2076~901.9~4.5
2Acetamiprid0.05、0.10、0.2075~985.0~14.4
3Glyphosate0.05、0.10、0.2076~900.9~6.3
4Thiamethoxam0.05、0.10、0.2092~1022.0~6.4
5Imidacloprid0.05、0.10、0.2075~1109.6~12.0
6Thiamethoxam0.05、0.10、0.2090~1002. 1~6.0
7Malathion0.05、0.10、0.2090~983.2~14.7
8Carbendazim0.05、0.10、0.2095~1061.6~9.5
9Thiacloprid0.05、0.10、0.2098~1023. 1~3.7
10Imidacloprid0.05、0.10、0.2095~1041.6~4.8
11Citrinin0.05、0.10、0.2098~1137.8~10.7
123-Hydroxykynurenine0.05、0.10、0.2094~1000.2~1.4
13Dinotefuran0.05、0.10、0.2096~1040.3~4.5
14Malathion0.05、0.10、0.2098~1044.6~7.0
15Thiamethoxam0.05、0.10、0.2098~1043.5~8.4
16DDT0.05、0.10、0.2098~1040.9~5.8
17Carbaryl0.05、0.10、0.2089~1002.3~4.2
18Methomyl0.05、0.10、0.2098~1043.7~5.2
19Methidathion0.05、0.10、0.2096~1002.8~5.4
20Methamidophos0.05、0.10、0.2094~982.6~14.5
21Dimethoate0.05、0.10、0.20100~1143.2~6.7
22Chlorpyrifos0.05、0.10、0.2095~1080. 1~7.0
23Thiophanate-methyl0.05、0.10、0.2094~980.6~1.8
24Methomyl0.05、0.10、0.2084~10211.0~14.5
25Difenoconazole0.05、0.10、0.2095~1081.0~2.3
26Acetamiprid0.05、0.10、0.2091~960.4~3.1
27Malathion0.05、0.10、0.2094~981.8~4.5
28Triadimefon0.05、0.10、0.2097~1003.2~5.0
29Triazophos0.05、0.10、0.2098~1041.5~7.4
30Fonofos0.05、0.10、0.2096~10412.7~14.3
31Flonicamid0.05、0.10、0.2098~1040.4~4.1
32Fluazinam0.05、0.10、0.2095~1020. 1~4.7
33Fluensulfone0.05、0.10、0.2096~1041. 1~5.1
34Carbaryl0.05、0.10、0.2096~1061. 1~5.2
35Flusilazole0.05、0.10、0.2094~1000.7~3.5
36Fenoxycarb0.05、0.10、0.2076~980. 1~4.5
37Buprofezin0.05、0.10、0.2095~980. 1~4.7
38Dimethoate0.05、0.10、0.20100~1064.6~9.2
39Pyriproxyfen0.05、0.10、0.2091~980.8~4.6
40Oxydemeton-methyl0.05、0.10、0.2090~987.4~14.1
41Imidacloprid0.05、0.10、0.2094~1007.0~10.2
42Malathion0.05、0.10、0.20100~1042.6~6.0
43Methamidophos0.05、0.10、0.20100~1041.2~7.4
44Propiconazole0.05、0.10、0.2092~1021.6~2.0
45Methoxyfenozide0.05、0.10、0.2091~1001.5~8.1
46Oxymatrine0.05、0.10、0.2097~1041.2~1.8
47Amitraz benzoate0.05、0.10、0.2092~960.2~5.7
48Chlorpyrifos0.05、0.10、0.20100~1040.5~2.7
49DDT0.05、0.10、0.2094~1042.6~8.4
50Deltamethrin0.05、0.10、0.2090~1001.6~6.0
51Flupyrimin0.05、0.10、0.2094~1000.8~3.9
52Abamectin0.05、0.10、0.2096~1000.6~1.5
53Avermectin0.05、0.10、0.20108~1140.3~12.6

3 Conclusion

This study employed a multifunctional syringe filter based on QuEChERS preprocessing technology, integrating purification and filtration into one unit. Combined with liquid chromatography-tandem mass spectrometry, a rapid multi-residue detection method was established for 45 pesticides and 8 metabolites in strawberries, including fluazinam and chlorpyrifos. The method offers a simple, fast, accurate, and reliable preprocessing step, providing an efficient analytical approach for screening and confirming pesticide residues in strawberries.

References: Omitted

Shopping Cart
MoxLab